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Overbarrier model with electron back-capture
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We present an extension of the classical overbarrier model [F. Sattin, Phys. Rev. A 62, 042711
(2000)] to include the effect of electron back-capture. Back-capture is the process by which an
electron that has already been captured by the projectile ion is re-captured by the target atom.
Back-capture reduces the overall electron capture cross section, especially at low velocity. When the
binding energy of the projectile is less than that of the target, the cross section falls substantially
at low velocity, which is in accord with experimental data.
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I. INTRODUCTION

The classical overbarrier model is a simple analytic model
that describes the charge exchange between a target atom
or ion and a projectile ion [1–6]. In the literature, the
model and all of its variations predict that the electron
capture cross section is a monotonically decreasing func-
tion of velocity [5–10]. In fact, the analytic formula shows
that the model predicts close to a 1/v velocity depen-
dence when ionization is neglected. With ionization, the
falloff with velocity is stronger.

Experiments, however, reveal that the cross section as a
function of velocity can contain a local maximum (see
for instance [11, 12] or Figs. 1 and 2 of this paper, which
reproduce some of the data in [11, 12]). We contend
that the model fails to correctly predict the velocity de-
pendence below this maximum because it neglects back-
capture, the process in which a target electron is captured
by the projectile but then captured back by the target all
within the same collision. A comprehensive model should
take into account the possibility of capture proceeded by
back-capture, proceeded by capture again, etc., all within
the same collision.

In general, a target atom with a large binding energy
holds its electron tightly so that the probability for elec-
tron capture by a projectile is low. In the context of the
overbarrier model, the back-capture process is similar to
the capture process, but with the roles of the projec-
tile and target reversed. Thus, the probability for back-
capture must be inversely proportional to the binding en-
ergy of the projectile ion. At low collison velocity, then,
where there is enough time for many capture and back-
capture processes, the electron should preferentially end
up bound to the object (the target or projectile) with the
greatest binding energy. So, when the binding energy of
the projectile is much lower than that of the target, it
is reasonable to expect a large decrease in the electron
capture cross section at low velocity. This is generally
true in experiment [11, 12], and we show it is also true
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in the overbarrier model with back-capture included.

II. REVIEW OF THE OVERBARRIER MODEL

The overbarrier model has several versions which vary
in the details. We use the version that can be found
in [5, 6, 13]. These references provide particularly nice
derivations of the model. To review, consider an electron
bound in the potential well of a target where the core
of the target has effective charge Zt. As a projectile ion
with charge Zp approaches to an internuclear distance R,
its potential well overlaps with that of the target creat-
ing a saddle-shaped potential field. In the plane of the
three particles, we use the cylindrical coordinate system
of [6] in which the internuclear axis is labelled with co-
ordinate z and the electron’s distance from this axis is
labelled with coordinate ρ. Then, the total (kinetic plus
potential) energy of the electron (in atomic units) is

E =
p2

2
− Zt

√

ρ2 + z2
− Zp

√

ρ2 + (R − z)2
. (1)

When the electron is bound to the target, and in the limit
R → ∞, the energy of the electron is approximated as

E(R) = −Et −
Zp

R
(2)

where Et is the binding energy of the target electron in
the absence of the projectile.
The saddle-shaped potential is a maximum along the in-
ternuclear axis at the distance

z0 =

√
Zt√

Zt +
√

Zp

R (3)

The electron is able to reach the saddle point if its max-
imum excursion is equal to z0. This occurs when the
internuclear spacing R is less than some maximum

Rm =
α
√

ZpZt + Zt

Et
. (4)



This expression is derived from Eq. 1 with z = z0 and
ρ = 0. When E in Eq. 1 is set to E(R) in Eq. 2, α = 2;
however, if E = −Et, α = 1. Sattin showed that α = 1
gave better agreement with certain experiments [6, 8].
However, α = 2 is consistent with the rest of the model,
which always uses the fully perturbed binding energy
(E(R) in Eq. 2), so we use α = 2 in all calculations.
When R < Rm, the electron can cross over the potential
barrier at time t and be captured by the projectile if its
orbit intersects the potential opening and if the electron
is in the part of the orbit that crosses the barrier. The
fraction of electron orbits that intersect the opening at
time t is given by

NΩ =

√

Zp

2
√

Zt(
√

Zt +
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Zp)2

[

(
√

Zt +
√

Zp)
2 − Zp − EtR

]

.

(5)
The fraction of electrons that cross any surface perpen-
dicular to their motion within the time interval dt is dt/T ,
where T is the period of the electron orbit:

T = 2

∫ rturn
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dr
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2
ZtE

−3/2
t (6)

where r =
√

ρ2 + z2 is the distance of the electron from
the target and rturn is the maximum radial excursion of
the electron, which occurs when p = 0. Note that p is
obtained from equating Eqs. 1 and 2. The approximation
on the second line of Eq. 6 is then obtained by applying
the large R limit (to zeroeth order in r2/R2), which is
consistent with Eq. 2. This is also equivalent to using
the momentum without considering the perturbation as
was done in [6]. We note that in [8], Sattin mistakenly
left out the Zp/|R − r| term in the momentum [14].
As in [6], we use the expression in Eq. 6, but apply a con-
stant corrective factor 1/fT with fT ≥ 1 to the period.
A justification for this is that we neglect the angular mo-
mentum of the electron, but the affect of finite angular
momentum is to decrease the period [6]. Otherwise, this
is a corrective factor that is needed to make the model
results more consistent with experiment.
Next, let W (t) represent the probability for the electron
to still be bound to the target at time t. Its time rate of
change is then given by

dW (t)

dt
= −NΩ

fT

T
W (t). (7)

Then, the probability for the electron to leak from the
target and be captured by the projectile is

Pl(b) = 1 − W (∞) = 1 − exp

(

−fT

T

∫ tm

−tm

NΩ dt

)

. (8)

Assuming a straight line collision trajectory with impact
parameter b and velocity v,

R =
√

b2 + (vt)2, (9)

the limits of the integral (±tm) are derived with R =
Rm, meaning −tm < t < tm is the time range in which
charge exchange can occur. The integral in Eq. 8 can
be performed analytically due to this known dependence
of R on time, meaning the leakage probability can be
calculated analytically. The total cross section

σ = 2π

∫

bPl(b)db (10)

involves an integral which is not normally analytically
tractable, so numerical integration is required.
One final consideration of the model is that of ioniza-
tion. During the collision process, it is possible that the
electron is ionized and not captured by the projectile.
There are different models within the overbarrier model
that have been used to account for ionization [6, 15]. We
follow Sattin’s, which calculates the electron’s binding
energy to the projectile while in the saddle point of the
potential [6]. This binding energy to the projectile is

E′
p = Et +

Zp − Zt

R
− v2

2
+

vetv
2t

R
, (11)

where
v2

et

2
=

(
√

Zt +
√

Zp)
2 − Zp

R
− Et. (12)

Note that the binding energy E′
p is not generally equal

to the projectile’s ground state binding energy Ep. The
condition for ionization is that E′

p(t) < 0, which one can
see from Eq. 11 primarily occurs for large v and small or
negative t. If E′

p(t) > 0 for the time interval ti < t < tf
which is within ±tm, the capture probability is

Pc(b) = 1 − exp

(

−fT

T

∫ tf

−ti

NΩ dt

)

. (13)

III. EXTENSION TO INCLUDE

BACK-CAPTURE

Accounting for the return of the electron to the target
once it has been captured by the projectile is relatively
straight-forward in the case when the projectile is the
same element as the target and Zp = Zt [16]. It is trick-
ier when the capture and back-capture are not identical
processes. To do this calculation, we first define three
time-dependent probabilities, wt, wp, and wi, which rep-
resent the probability for the electron to be bound to
the target, bound to the projectile, and ionized, respec-
tively. They are constrained in that wt + wp + wi = 1.



We can then write evolution equations for each of these
probabilities,

dwt

dt
= −jtpwt − jtiwt + jptwp

dwp

dt
= −jptwp − jpiwp + jtpwt (14)

dwi

dt
= jtiwt + jpiwp

where jtp and jpt are the rates of charge exchange from
the target to the projectile and from the projectile to
the target, respectively, while jti and jpi are the rates of
ionization for an electron bound to the target and to the
projectile. Given the initial conditions wt = 1, wp = wi =
0 at t → −∞, the summation constraint (wt +wp +wi =
1) is automatically satisfied. The charge exchange and
ionization rates are

jtp =
fT

Tt
NΩ,t Θ(E′

p) Θ(tm,t − |t|)

jti =
fT

Tt
NΩ,t Θ(−E′

p) Θ(tm,t − |t|)

jpt =
fT

Tp
NΩ,p Θ(E′

t) Θ(tm,p − |t|)

jpi =
fT

Tp
NΩ,p Θ(−E′

t) Θ(tm,p − |t|)

where Θ is the Heaviside step function. Tt, NΩ,t, and
tm,t are equivalent to T,NΩ, and tm from the previous
section. The added subscript t simply denotes that they
apply to the electron while it is bound to the target.
The new variables Tp, NΩ,p, and tm,p, denote quantities
for the electron bound to the projectile, while E′

t is the
counterpart of E′

p – it is the binding energy to the target
while in the saddle point, and is not generally equal to
Et. To get the expressions for these new variables, simply
take all of the expressions in the previous section and
exchange the subscripts, t → p, p → t.
The differential equations (Eqs. 14) must be solved nu-
merically. One point to keep in mind is that the time
limits during which the equations must be solved are
−tm,t < t < max(tm,t, tm,p). The back-capture may pro-
ceed even after the original capture shuts off, or it may
shut off before the original capture does. This depends
on the relative values of Zt, Zp, Et, and Ep.

IV. RESULTS

As a first test case, we look at the electron capture cross
section between N++Ne. Expreimental data from Lo [11]
shows that the capture cross section contains a peak at
relatively low velocity (∼ 108 cm/s) as is characteristic
when the projectile has lower binding energy than the
target (Ebind = 14.5 eV for N and Ebind = 21.6 eV for
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FIG. 1: Comparison of cross section calculations with and
without back capture to experimental data [11] for the charge
exchange between N and Ne. Ionization is included.
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FIG. 2: Comparison of cross section calculations from the
overbarrier model with back capture and ionization to exper-
imental data [12].

Ne). The experimentally measured cross section as a
function of velocity is shown in Fig. 1 along with calcu-
lations from the overbarrier model (OBM), in which we
set the free parameter fT = 5.

When back-capture is not included, the overbarrier
model is a monotonically decreasing function. With
back-capture, there is a peak, allowing for better agree-
ment with experiment at low velocity. The primary ef-
fects of increasing fT are to move the peak in the cross
section to higher velocity and to decrease the total cross
section. Without applying any rigorous metric, we have
chosen fT = 5 because it provides relatively good overall
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FIG. 3: The velocity at which the cross section curve peaks
for the overbarrier model as a function of ∆E = Et − Ep.

agreement with the experiment.
As a second test case, we compare the full overbarrier
model charge exchange cross section calculations to ex-
periments [12] with H++He and H++Ar as seen in Fig. 2.
Note that Ebind = 13.6 eV for H, Ebind = 24.6 eV for He,
and Ebind = 15.8 eV for Ar. Again, we use fT = 5,
which gives relatively good, but not necessarily the best
agreement between the model and the experiments.

Despite the mediocre agreement, the extended overbar-
rier model developed here appears to display a property
that is consistent with experiment (at least with most of
the data in [11, 12]). That is, the velocity at which the
cross section peaks is proportional to ∆E = Et − Ep as
evident in Fig. 2. We show this more clearly for our over-
barrier model in Fig. 3, where we plot the velocity at the
cross section peak as a function of ∆E. When ∆E ≤ 0,
there is no peak in the cross section curves (the curves
are monotonically decreasing), but for ∆E > 0 the peak
velocity grows until Ep ≪ Et. Up until Ep ≪ Et, there is
no dependence on Et, meaning that the particular target
and projectile species do not matter. Only the absolute
difference in their binding energies matters.

Thus, the overbarrier model with back-capture produces
peaked cross section curves when the binding energy of
the projectile ion is less than that of the target atom,
which is a fairly consistent feature seen in experimen-
tal cross section curves. The peak in the cross section
curve scales correctly with ∆E; however, the location
of the peak does not agree perfectly with experimental
data. Overall, the overbarrier model with back-capture
provides an improvement over the model without back-
capture by taking into account the binding energy of
the projectile, albeit at the expense of computational re-
sources.
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